
J Math Chem (2014) 52:1870–1894
DOI 10.1007/s10910-014-0353-x

ORIGINAL PAPER

Trigonometrically fitted high-order predictor–corrector
method with phase-lag of order infinity for the
numerical solution of radial Schrödinger equation

Ali Shokri · Hosein Saadat

Received: 6 October 2013 / Accepted: 30 March 2014 / Published online: 9 April 2014
© Springer International Publishing Switzerland 2014

Abstract In this paper, we present a new optimized symmetric ten-step predictor–
corrector method with phase-lag of order infinity (phase-fitted). The method is based
on the symmetric eight-step predictor–corrector method of Simos and et al, that is
constructed to solve numerically the radial Schrödinger equation during the resonance
problem with the use of the Woods–Saxon potential. It can also be used to integrate
related IVPs with oscillating solutions such as orbital problems. We compare the
new method to some recently constructed optimized methods from the literature. We
measure the efficiency of the methods and conclude that the new method with infinite
order of phase-lag is the most efficient of all the compared methods and for all the
problems solved.

Keywords Orbital problems · Phase-lag · Initial value problems · Oscillating
solution · Predictor–corrector · Symmetric multistep methods

1 Introduction

The radial time-independent Shorödinger equation can be written as

y′′(x) =
(

l(l + 1)

x2 + V (x)− E

)
y(x), (1)
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where l(l+1)
x2 is the centrifugal potential, V (x) is the potential, E is the energy and

W (x) = l(l+1)
x2 + V (x) is the effective potential. It is valid that limx→∞ V (x) = 0 and

therefore limx→∞ W (x) = 0. We consider E > 0 and divide [0,∞) into subintervals
[ai , bi ) so that W (x) is a constant with value W . After this the problem (1) can be
expressed by the approximation:

y′′
i = (W − E)yi ,

whose theoretical solution is

yi = Ai exp(
√

W − Ex)+ Bi exp(
√

W − E x), A i , B i ∈ R,

Many numerical methods have been developed for the efficient solution of the
Schrödinger equation and related problems [1–27,35–54,58–90]. For example Simos
et al. [44], developed a symmetric eight-step predictor–corrector method of tenth alge-
braic order, Raptis and Allison have developed a two-step exponentially-fitted method
of order four [50]. More recently Kalogiratou and Simos have constructed a two-step
P-stable exponentially-fitted method of order four [22]. Some other notable multistep
methods for the numerical solution of oscillating IVPs have been developed by Chawla
and Rao [10], who produced a three-stage, two-step P-stable method with minimal
phase-lag and order six and by Henrici [16], who produced a four-step symmetric
method of order six. Also Anastassi and Simos have developed trigonometrically fit-
ted six-step symmetric methods in [6]. In [49,75–78,82,86,87] some new multistep
methods of several orders are developed for the numerical solution of Schrödinger
equation by Vigo-Aguiar and et al. In [30–83] detailed reviews of the current research
on the subject of this paper is presented.

2 Phase-lag analysis of symmetric multistep methods

For the numerical solution of the initial value problem

y ′′ = f (x, y), y(x 0) = y0, y ′(x 0) = y ′
0, (2)

multistep methods of the form

m∑
i=0

ai yn+i = h2
m∑

i=0

bi f (xn+i , yn+i ), (3)

with m steps can be used over the equally spaced intervals {xi }m
i=0 ∈ [a, b] and

h := |xi+1 − xi |, i = 0 ( 1 )m − 1.
If the method is symmetric then ai = am−i and bi = bm−i , i = 0 ( 1) �m

2 �.
Method (3) is associated with the operator

L(x) =
m∑

i=0

ai u(x + ih) = h2
m∑

i=0

bi u
′′
(x + ih), (4)
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where u ∈ C
2.

Definition 2.1 The multistep method (3) is called algebraic of order p if the associated
linear operator L vanishes for any linear combination of the linearly independent
functions 1, x, x2, . . . , x p−1.

When a symmetric 2k-step method, that is for i = − k ( 1 ) k, is applied to the scalar
test equation

y ′′ = −ω2 y, (5)

a difference equation of the form

Ak(ν)yn+k + · · · + A1(ν)yn+1 + A0(ν)yn + A1(ν)yn1 + · · · + Ak(ν)ynk = 0, (6)

is obtained, where ν = ωh, h is the step length and A0(ν), A1(ν), . . . , Ak(ν) are
polynomials of ν. The characteristic equation associated with (6) is

Ak(ν)s
k + · · · + A1(ν)s + A0(ν)+ A1(ν)s

−1 + · · · + Ak(ν)s
−k = 0. (7)

From Lambert and Watson [29] we have the following definitions.

Definition 2.2 A symmetric 2k-step method with characteristic equation given by
(7) is said to have an interval of periodicity (0, ν2

0 ) if, for all ν ∈ (0, ν2
0 ), the roots

si , i = 1(1)2k of Eq. (7) satisfy

s1 = exp(i θ (ν)), s2 = exp(− i θ (ν)), and |si | � 1, i = 3(1)2k, (8)

where θ(ν) is a real function of ν.

Definition 2.3 For any method corresponding to the characteristic equation (7) the
phase-lag is defined as the leading term in the expansion of

t = ν − θ(ν).

Then if the quantity t = O(ν q+1) as ν → ∞, the order of phase-lag is q.

Theorem 2.4 The symmetric 2k-step method with characteristic equation given by
(7) has phase-lag order q and phase-lag constant c given by

−cνq+2 + O(νq+4) = D1

D2
,

where

D1 =
k∑

i=1

2Ai (ν) cos(iν)+ A0(ν),
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and

D2 =
k∑

i=1

2k2 Ak(ν).

Proof See [11]. �	
The formula proposed from the above theorem gives us a direct method to calculate
the phase-lag of any symmetric 2k-step method. In our case, the symmetric ten-step
method has phase-lag order q and phase-lag constant c given by:

−cνq+2 + O(νq+4) = plnum

plden
,

where

plnum = 2A5(ν) cos(5ν)+ 2A4(ν) cos(4ν)+ 2A3(ν) cos(3ν)+ 2A2(ν) cos(2ν),

+2A1(ν) cos(ν)+ A0(ν),

and

plden = 50A5(ν)+ 34A4(ν)+ 18A3(ν)+ 8A2(ν)+ 2A1(ν).

3 Construction of the new optimized predictor–corrector method

From the form (3) and without loss of generality we assume am = 1 and we can write

yn+m +
m−1∑
i=0

ai yn+i = h2
m∑

i=0

bi f (xn+i , yn+i ), (9)

hence

yn+m = −
m−1∑
i=0

ai yn+i + h2
m∑

i=0

bi f (xn+i , yn+i ). (10)

If the method is symmetric then ai = am−i and bi = bm−i , i = 0(1)�m
2 �.

The approach of Panopoulos and Simos
The main aim of this paper is the extension of the method presented in the paper:

A symmetric eight-step predictor–corrector method for the numerical solution of the
radial Schrödinger equation and related IVPs with oscillating solutions, by mathemati-
cians Panopoulos, Anastassi, and Simos which published in [44]. In the mentioned
paper, the authors provied a new optimized symmetric eight-step predictor–corrector
method of order ten and infinite order of phase-lag (phase-fitted). Also their method
has an interval of periodicity (0, v2

0) where v2
0 = 5.63. The local truncation of their

method is
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LT E[44] = 12506213339

5794003353600
h12

(
y(12)

n + y(10)
n ω2

)
+ O

(
h14

)
.

Their method is based on the symmetric multistep method of Quinlan–Tremaine, with
eight steps and eighth algebraic order and is constructed to solve numerically the
radial time-independent Schrödinger equation during the resonance problem with the
use of the Woods–Saxon potential. It can also be used to integrate related IVPs with
oscillating solutions such as orbital problems.

3.1 The new explicit method with phase-lag of order infinite (phase-fitted)

From the form (10) with m = 10 we get the form of the explicit symmetric ten-step
methods

y5 = −(y−5 + a4(y4 + y−4)+ a3(y3+y−3)+a2(y2 + y−2)+ a1(y1 + y−1)+a0 y0)

+h2(b4( f4 + f−4)+ b3( f3 + f−3)+ b2( f2 + f−2))+ b1( f1 + f−1)+ b0 f0).

(11)

The characteristic equation (7) becomes

A5(ν)s
5 + · · · + A1(ν)s + A0(ν)+ A1(ν)s

−1 + · · · + A5(ν)s
−5 = 0, (12)

where
Ai (ν) = ai + ν2bi , i = 0(1)5 , a5 = 1. (13)

From (11) with

a4 = −2, a3 = 2, a2 = −1, a1 = 0, a0 = 0,

b0 = 187585

10368
, b1 = −1725439

129600
, b2 = 1195787

129600
,

b3 = −395137

129600
, b4 = 823931

518400
,

yi = y(x + ih) , fi = f (x + ih, y(x + ih)),

we obtain the symmetric multistep method, like Quinlan and Tremaine method [48],
with ten step and tenth algebraic order. This method has an interval of periodicity
(0, ν2

0 ) where ν2
0 = 0.1681. From (11) and by keeping the same ai coefficients and

by nullifying the phase-lag, we get

a4 = −2, a3 = 2, a2 = −1, a1 = 0, a0 = 0,

b0 = −201233

2160
+ 70 b4, b1 = 217991

2880
− 56 b4, b2 = −50797

1440
+ 28 b4,

b3 = −8 b4 + 16703

1728
, b4 = b4 , num

17280 v2 (cos (v)− 1)4
, (14)
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where

b4 ,num = −34560 (cos (v))5 + 34560 (cos (v))4 + 25920 (cos (v))3

−83515 (cos (v))3 v2 − 30240 (cos (v))2 + 152391 (cos (v))2 v2

−100857 v2 cos (v)+ 2160 cos (v)+ 2160 + 24421 v2,

yi = y(x + ih), fi = f (x + ih, y(x + ih)),

where v = ωh, ω is the frequency and h is the step length. For small values of v the
above formulae are subject to heavy cancelations. In this case the following Taylor
series expansion must be used

b0 = 187585

10368
− 9450497

2280960
v2 + 58886839

242611200
v4 − 10906937

4269957120
v6

+ 448351349

10888390656000
v8− 54990688271

52133614460928000
v10 − 1448007761

32769700518297600
v12

− 6319150661

3365819319582720000
v14 − 651455797942379

10370351857541287772160000
v16

− 53443646514719

29629576735832250777600000
v18− 518135205550103

12029608154747893815705600000
v20,

b1 = −1725439

129600
+ 9450497

2851200
v2 − 58886839

303264000
v4 + 10906937

5337446400
v6

− 448351349

13610488320000
v8 + 54990688271

65167018076160000
v10 + 1448007761

40962125647872000
v12

+ 6319150661

4207274149478400000
v14 + 651455797942379

12962939821926609715200000
v16

+ 53443646514719

37036970919790313472000000
v18 + 518135205550103

15037010193434867269632000000
v20,

b2 = 1195787

129600
− 9450497

5702400
v2 + 58886839

606528000
v4 − 10906937

10674892800
v6

+ 448351349

27220976640000
v8 − 54990688271

130334036152320000
v10 − 1448007761

81924251295744000
v12

− 6319150661

8414548298956800000
v14 − 651455797942379

25925879643853219430400000
v16

− 53443646514719

74073941839580626944000000
v18 − 518135205550103

30074020386869734539264000000
v20,

b3 = −395137

129600
+ 1350071

2851200
v2 − 58886839

2122848000
v4 + 10906937

37362124800
v6

− 448351349

95273418240000
v8 + 54990688271

456169126533120000
v10 + 1448007761

286734879535104000
v12

+ 6319150661

29450919046348800000
v14 + 651455797942379

90740578753486268006400000
v16
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Fig. 1 Behavior of the coefficients b0 and b1 in new method

+ 53443646514719

259258796438532194304000000
v18 + 518135205550103

105259071354044070887424000000
v20,

b4 = 823931

518400
− 1350071

22809600
v2 + 58886839

16982784000
v4 − 10906937

298896998400
v6

+ 448351349

762187345920000
v8 − 54990688271

3649353012264960000
v10 − 1448007761

2293879036280832000
v12

− 6319150661

235607352370790400000
v14 − 651455797942379

725924630027890144051200000
v16

− 53443646514719

2074070371508257554432000000
v18 − 518135205550103

842072570832352567099392000000
v20.

The explicit symmetric ten-step method (11) with coefficients (14), has an interval
of periodicity (0, ν2

0 ) where ν2
0 = 0.1764 and the behavior of the coefficients of the

predictor method are shown in Figs. 1, 2 and 3. In order to find the local truncation
error (LTE), we express y± i , i = 1(1)5 and f± j , j = 0 (1)5 via Taylor series and
we substitute in (11). Based on this procedure we obtain the following expansion for
the LTE:

LT E = 1350071

22809600

(
y(12)

n + ω2 y(10)
n

)
h12 + O

(
h14

)
.

The new optimized explicit symmetric multistep method has ten steps, tenth algebraic
order and infinite order of phase-lag (phase-fitted).

3.2 The new implicit method with phase-lag of order infinite (phase-fitted)

From the form (10) with m = 10, we get the form of the implicit symmetric ten-step
methods
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Fig. 2 Behavior of the coefficients b2 and b3 in new method

Fig. 3 Behavior of the
coefficient b4 in new method

y 5 = −(y−5 + α4(y4 + y−4)+ α3(y3 + y−3)+ α2(y2 + y−2)+ α1(y1 + y−1)

+α0 y0)+ h2(β5( f5 + f−5)+ β4( f4 + f−4)+ β3( f3 + f−3)+ β2( f2 + f−2))

+b1( f1 + f−1)+ b0 f0) (15)

The characteristic equation (7) becomes

A 5(ν)s
5 + · · · + A1(ν)s + A0(ν)+ A1(ν)s

−1 + · · · + A5(ν)s
−5 = 0, (16)

where
A i (ν) = α i + ν2 β i , i = 0(1)5, α 5 = 1. (17)
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From (15) and by keeping the same αi coefficients and by nullifying the phase-lag,
we get

α4 = −2 , α3 = 2 , α2 = −1, α1 = 0 , α0 = 0 ,

β0 = 187585

10368
− 252 β5, β1 = −1725439

129600
+ 210 β5 , β2 = 1195787

129600
− 120 β5,

β3 = −395137

129600
+ 45β5 , β4 = −10 β5 + 823931

518400
,

β5 = β 5 , num

1036800 v2 (cos (v)− 1)5
, (18)

where

β5 , num = −1036800 (cos (v))5 + 1036800 (cos (v))4 − 823931 (cos (v))4 v2

+777600 (cos (v))3 + 790274 (cos (v))3 v2 − 371856 (cos (v))2 v2

−907200 (cos (v))2 + 270014 v2 cos (v)+ 64800 cos (v)

−91301 v2 + 64800,

where v = ωh, ω is the frequency and h is the step length.
For small values of v the above formulae are subject to heavy cancelations. In this

case the following Taylor series expansion must be used

β0 = 18117277

5702400
− 547336457

1482624000
v2 + 13099127

8895744000
v4 + 1122215903

2016368640000
v6

+ 411284674673

14481559572480000
v8 + 1674319402961

1911565863567360000
v10

+ 54172151741

4187239510671360000
v12 − 406647992425891

872925240533778432000000
v14

− 1769796744884513

34567839525137625907200000
v16− 650688266276051

227316858555326791680000000
v18

− 36214302547577572541

287146746653832225380892672000000
v20

− 2812615784913733710991

585779363173817739777021050880000000
v22 + · · · ,

β1 = −10081177

11404800
+ 547336457

1779148800
v2 − 13099127

10674892800
v4 − 1122215903

2419642368000
v6

− 411284674673

17377871486976000
v8 − 1674319402961

2293879036280832000
v10

− 54172151741

5024687412805632000
v12 + 406647992425891

1047510288640534118400000
v14

+ 1769796744884513

41481407430165151088640000
v16+ 650688266276051

272780230266392150016000000
v18
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+ 36214302547577572541

344576095984598670457071206400000
v20

+ 2812615784913733710991

702935235808581287732425261056000000
v22 + · · · ,

β2 = 6056249

2851200
− 547336457

3113510400
v2 + 13099127

18681062400
v4 + 1122215903

4234374144000
v6

+ 411284674673

30411275102208000
v8 + 1674319402961

4014288313491456000
v10

+ 54172151741

8793202972409856000
v12 − 406647992425891

1833143005120934707200000
v14

− 1769796744884513

72592463002789014405120000
v16 − 650688266276051

477365402966186262528000000
v18

− 36214302547577572541

603008167973047673299874611200000
v20

− 2812615784913733710991

1230136662665017253531744206848000000
v22 + · · · ,

β3 = − 8790917

22809600
+ 547336457

8302694400
v2 − 13099127

49816166400
v4 − 1122215903

11291664384000
v6

− 411284674673

81096733605888000
v8 − 1674319402961

10704768835977216000
v10

− 54172151741

23448541259759616000
v12 + 406647992425891

4888381346989159219200000
v14

+ 1769796744884513

193579901340770705080320000
v16 + 650688266276051

1272974407909830033408000000
v18

+ 36214302547577572541

1608021781261460462132998963200000
v20

+ 2812615784913733710991

3280364433773379342751317884928000000
v22 + · · · ,

β4 = 11376127

11404800
− 547336457

37362124800
v2 + 13099127

224172748800
v4 + 1122215903

50812489728000
v6

+ 411284674673

364935301226496000
v8 + 1674319402961

48171459761897472000
v10

+ 54172151741

105518435668918272000
v12 − 406647992425891

21997716061451216486400000
v14

− 1769796744884513

871109556033468172861440000
v16 − 650688266276051

5728384835594235150336000000
v18

− 36214302547577572541

7236098015676572079598495334400000
v20

− 2812615784913733710991

14761639951980207042380930482176000000
v22 + · · · ,
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Fig. 4 Behavior of the coefficients β0 and β1 in new method

β5 = 1350071

22809600
+ 547336457

373621248000
v2 − 13099127

2241727488000
v4 − 1122215903

508124897280000
v6

− 411284674673

3649353012264960000
v8 − 1674319402961

481714597618974720000
v10

− 54172151741

1055184356689182720000
v12 + 406647992425891

219977160614512164864000000
v14

+ 1769796744884513

8711095560334681728614400000
v16 + 650688266276051

57283848355942351503360000000
v18

+ 36214302547577572541

72360980156765720795984953344000000
v20

+ 2812615784913733710991

147616399519802070423809304821760000000
v22 + · · · .

The implicit symmetric ten-step method (15) with coefficients (18), has an interval
of periodicity (0, ν2

0 ) where ν2
0 = 1.210 and the behavior of the coefficients of the

predictor method are shown in Figs. 4, 5 and 6. The LTE of the above method is given
by

LT E = − 547336457

373621248000

(
y(14) + ω2 y(12)

)
h14.

The new optimized implicit symmetric multistep method has ten steps, twelve alge-
braic order and infinite order of phase-lag (phase-fitted).
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Fig. 5 Behavior of the coefficients β2 and β3 in new method

Fig. 6 Behavior of the coefficients β4 and β5 in new method

4 The new predictor–corrector method

From Lambert [28], we have that the general k-step predictor–corrector or PC pair is

m∑
j=0

a∗
j yn+ j = h

m−1∑
j=0

b∗
j fn+ j ,

m∑
j=0

a j yn+ j = h
m∑

j=0

b j fn+ j . (19)
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Let the predictor and corrector defined by (20) have orders p∗ and λ � p − p∗ − 1,
respectively. The order of a PC method depend on the gap between p∗ and p and on
λ, the number of times the corrector is called. If p∗ < p, the order of the PC method
is p∗ + λ(< p) [28]. We consider the pair of linear multistep methods

m∑
i=0

ai yn+i = h2
m−1∑
i=0

bi (ν) f (xn+i , yn+i ),

m∑
i=0

ai yn+i = h2
m−1∑
i=0

βi (ν) f (xn+i , yn+i ), (20)

where |a0| + |b0(ν)| �= 0, |a0| + |β0(ν)| �= 0, ν = ω h, ω is the frequency and h is
the step length. Without loss of generality we assume that am = 1 and we can write

yn+m +
m−1∑
i=0

ai yn+i = h2
m−1∑
i=0

bi (ν) f (xn+i , yn+i ),

yn+m +
m−1∑
i=0

ai yn+i = h2
(
βm(ν) f (xn+i , yn+i )

m−1∑
i=0

βi (ν) f (xn+i , yn+i )
)
,

and we have

yn+m = −
m−1∑
i=0

ai yn+i + h2
m−1∑
i=0

bi (ν) f (xn+i , yn+i ),

yn+m = −
m−1∑
i=0

ai yn+i + h2
(
βm(ν) f (xn+i , yn+i )

m−1∑
i=0

βi (ν) f (xn+i , yn+i )
)
.

If we call An = −∑m−1
i=0 ai yn+i we can write

yn+m = An + h2
m−1∑
i=0

bi (ν) f (xn+i , yn+i ),

yn+m = An + h2
(
βm(ν) f (xn+i , yn+i )

m−1∑
i=0

βi (ν) f (xn+i , yn+i )
)
.

From this pair, a new predictor–corrector (PC) pair form, is formally defined as follows

y∗
n+m = An + h2

m−1∑
i=0

bi (ν) f (xn+i , yn+i ),

yn+m = An + h2βm(ν) f (xn+i , y∗
n+i )+ h2

m−1∑
i=0

βi (ν) f (xn+i , yn+i ), (21)
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where An = −∑m−1
i=0 ai yn+i , | a0 | + | b0(ν) |�= 0 , | a0 | + | β0(ν) |�=

0 , ν = ω h, ω is the frequency and h is the step length. If the method is symmetric
then ai = am−i , bi (ν) = bm−i (ν) , i = 0(1)�m

2 �. From (21), (11) and (15) a
new symmetric ten-step predictor–corrector method with phase-lag of order infinite
(phase-fitted) obtained

y ∗
5 = A + h2

(
b4(ν)( f4 + f−4)+

(
−8 b4(ν)+ 16703

1728

)
( f3 + f−3)

+
(

−50797

1440
+ 28 b4(ν)

)
( f2 + f−2)+

(
217991

2880
− 56 b4(ν)

)
( f1 + f−1)

+
(

−201233

2160
+ 70 b4(ν)

)
f0

)
,

y5 = A + h2
(
β5(ν)( f ∗

5 + f−5)+
(

−10 β5(ν)+ 823931

518400

)
( f4 + f−4)

+
(

−395137

129600
+ 45β5(ν)

)
( f3 + f−3)+

(
1195787

129600
−120 β5(ν)

)
( f2 + f−2)

+
(

−1725439

129600
+ 210 β5(ν)

)
( f1 + f−1)

+
(

187585

10368
− 252 β5(ν)

)
f0

)
, (22)

where

A = −y−5 + (y4 + y−4)− 10(y3 + y−3)+ 10(y2 + y−2),

b4(ν) = b4 , num

17280 v2 (cos (v)− 1)4
, β5(ν) = β 5 , num

1036800 v2 (cos (v)− 1)5
,

and

b4 , num = −34560 (cos (v))5 + 34560 (cos (v))4 + 25920 (cos (v))3

−83515 (cos (v))3 v2 − 30240 (cos (v))2 + 152391 (cos (v))2 v2

−100857 v2 cos (v)+ 2160 cos (v)+ 2160 + 24421 v2,

β5 , num = −1036800 (cos (v))5 + 1036800 (cos (v))4 − 823931 (cos (v))4 v2

+777600 (cos (v))3 + 790274 (cos (v))3 v2 − 371856 (cos (v))2 v2

−907200 (cos (v))2 + 270014 v2 cos (v)+ 64800 cos (v)

−91301 v2 + 64800,

yi = y(x + ih), fi = f (x + ih, y(x + ih)),

ω is the frequency and h is the step length.
For small values of v the following Taylor series expansions must be used:

b4(ν) = 823931

518400
− 1350071

22809600
v2 + 58886839

16982784000
v4 − 10906937

298896998400
v6
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+ 448351349

762187345920000
v8 − 54990688271

3649353012264960000
v10

− 1448007761

2293879036280832000
v12 − 6319150661

235607352370790400000
v14

− 651455797942379

725924630027890144051200000
v16 − 53443646514719

2074070371508257554432000000
v18

− 518135205550103

842072570832352567099392000000
v20

+ · · · ,
β5(ν) = 1350071

22809600
+ 547336457

373621248000
v2 − 13099127

2241727488000
v4

− 1122215903

508124897280000
v6 − 411284674673

3649353012264960000
v8

− 1674319402961

481714597618974720000
v10 − 54172151741

1055184356689182720000
v12

+ 406647992425891

219977160614512164864000000
v14 + 1769796744884513

8711095560334681728614400000
v16

+ 650688266276051

57283848355942351503360000000
v18 + 36214302547577572541

72360980156765720795984953344000000
v20

+ 2812615784913733710991

147616399519802070423809304821760000000
v22 + · · · .

The characteristic equation (7) becomes

A5(ν)s
5 + · · · + A1(ν)s + A0(ν)+ A1(ν)s

−1 + · · · + A5(ν)s
−5 = 0, (23)

where

Ai (ν) = αi + ν2 (βi (ν)− aiβ5(ν))− ν4biβ5(ν), i = 0(1)5, (24)

b5 = 0, a5 = α5 = 1. (25)

The new optimized symmetric ten-step predictor–corrector method (22) has an interval
of periodicity (0, ν2

0 ) where ν2
0 = 9.89. The LTE of the above method is given by

LT E PC = 96506469327691

47345284546560000

(
y(14) + ω2 y(12)

)
h14 + O

(
h16

)
.

The new optimized symmetric ten-step predictor–corrector method (22) has ten steps,
twelve algebraic order and infinite order of phase-lag (phase-fitted).

5 Numerical results

5.1 The methods

We have used several multistep methods for the integration of the five test problems.
These methods are

• The Numerovs method which is indicated as Method I.
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• The Exponentially-fitted two-step method developed by Raptis and Allison [50]
which is indicated as Method II.

• The Exponentially-fitted four-step method developed by Raptis [51] which is indi-
cated as Method III.

• The eight-step ninth algebraic order method developed by Quinlan and Tremaine
[48] which is indicated as Method IV.

• The ten-step eleventh algebraic order method developed by Quinlan and Tremaine
[48] which is indicated as Method V.

• The twelve-step thirteenth algebraic order method developed by Quinlan and
Tremaine [48] which is indicated as Method VI.

• The eight-step method with phase-lag and its first derivative equal to zero obtained
in [18] which is indicated as Method VII.

• The eight-step method with phase-lag and its first and second derivative equal to
zero obtained in [19] which is indicated as Method VIII.

• The ten-step method with phase-lag and its first and second derivatives equal to
zero obtained in [17] which is indicated as Method IX.

• The ten-step method with phase-lag and its first, second and third derivatives equal
to zero obtained in [17] which is indicated as Method X.

• The new developed ten-step predictor–corrector method which is indicated as
Method XI.

• An exponentially-fitted eight-order method obtained in [77] which is indicated as
XII.

5.2 The problems

The efficiency of the new optimized symmetric ten-step predictor–corrector method
will be measured through the integration of five initial value problems with oscillating
solution. In order to apply the new method to the radial Schrödinger equation the value
of parameter ω is needed. For every problem of the one-dimensional Schrödinger
equation given by (1) the parameter ω is given by

ω = √|q(x)| = √|V (x)− E |, (26)

where V (x) is the potential and E is the energy.

Example 5.1 We consider the Schrödinger equation resonance problem. We will inte-
grate problem (1) with l = 0 at the interval [0, 15] using the well-known Woods–Saxon
potential

V (x) = u0

(1 + q)
+ u1q

(1 + q)2
, q = exp

(
x − x0

a

)
,

where u0 = −50 a = 0.6, x0 = 7, u1 = − u0
a . The behaviour of the Woods–Saxon

potential is shown in Fig. 7 and with boundary condition y(0) = 0. The potential V (x)
decays more quickly than l(l+1)

x2 , so for large x (asymptotic region) the Schrödinger
equation (1) becomes
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Fig. 7 The Woods–Saxon
potential

y′′(x) =
(

l(l + 1)

x2 + V (x)− E

)
y(x).

The last equation has two linearly independent solutions kx jl(kx) and kxnl(kx),
where jl and nl are the spherical Bessel and Neumann functions, respectively. When
x → ∞ the solution of Eq. (1) has the asymptotic form

y(x) ≈ Akx jl(kx)− Bkxnl(kx)

≈ D

[
sin

(
kx − lπ

2

)
+ tan(δl) cos

(
kx − lπ

2

)]
,

where δl is called scattering phase shift and it is calculated by the following expression:

tan(δl) = y(xi )S(xi+1)− y(xi+1)S(xi )

y(xi+1)C(xi )− y(xi )C(xi+1)
,

where S(x) = kx jl(kx), C(x) = kxnl(kx) and xi < xi + 1 and both belong to
the asymptotic region. Given the energy we approximate the phase shift, the accurate
value of which is π/2 for the above problem. We will use for the energy the value E =
341.495874. For some well known potentials, such as the Woods–Saxon potential, the
definition of parameter ω is not given as a function of x but based on some critical
points which have been defined from the study of the appropriate potential (see for
details [20]). For the purpose of obtaining our numerical results it is appropriate to
choose ω as follows (see for details [20]):

ω =
{√

E + 50, x ∈ [0, 6.5],√
E, x ∈ [6.5, 15].
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Example 5.2 The “almost” by Franco and Palacios [14], can be described by

y′′ + y = εeiψx , y(0) = 1, y′(0) = i, y ∈ C

or equivalently by

u′′ + u = ε cos(ψx), u(0) = 1, u′(0) = 0

v′′ + v = ε sin(ψx), u(0) = 0, v′(0) = 1,

where ε = 0.001 and ψ = 0.01. The theoretical solution of the this problem is given
by

y(x) = u(x)+ iv(x), u, v ∈ R, (27)

where

u(x) = 1 − ε − ψ2

1 − ψ2 cos(x)+ ε

1 − ψ2 cos(ψx),

v(x) = 1 − εψ − ψ2

−ψ2 sin(x)+ ε

1 − ψ2 sin(ψx).

This system of equations has been solved for x ∈ [0, 1000π ]. For this problem we
use ω = 1.

Example 5.3 The “almost” periodic orbital problem studied by Stiefel and Bettis [81],
can be described by

y′′ + y = 0.001eix , y(0) = 1, y′(0) = 0.9995i, y ∈ C,

or equivalently by

u′′ + u = 0.001 cos(ψx), u(0) = 1, u′(0) = 0,

v′′ + v = 0.001 sin(ψx), u(0) = 0, v′(0) = 0.9995.

The theoretical solution of this problem is given by y(x) = u(x) + iv(x), where
u, v ∈ R and

u(x) = cos(x)+ 0.0005 sin(x),

v(x) = sin(x)− 0.0005x cos(x).

This system has been solved for x ∈ [0, 1000π ] and for this problem we use ω = 1.
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Example 5.4 (Inhomogeneous Equation) Consider the initial value problem

y′′ = −100y + 99 sin(t), y(0) = 1, y′(0) = 11, t ∈ [0, 1000π ].

with the exact solution y(x) = cos(10t) + sin(10t) + sin t . For this problem we use
ω = 1.

Example 5.5 We consider the nonlinear undamped Duffing equation

y′′ = −y − y3 + B cos(ωx), y(0) = 0.200426728067, y′(0) = 0, (28)

where B = 0.002, ω = 1.01 and x ∈
[
0, 40.5π

1.01

]
.

We use the following exact solution for (28) from [33],

g(x) =
3∑

i=0

K2i+1 cos((2i + 1)ωx),

where

{K1, K3, K5, K7} = {0.200179477536, 0.246946143 × 10−3,

0.304016 × 10−6, 0.374 × 10−9}.

5.3 Comparison

For the problems that the theoretical solution is known the NFE is the Number of
Function Evaluations.

Fig. 8 Efficiency for the resonance problem using E = 989.701916
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Fig. 9 Efficiency for the Franco and Palacios equation

Fig. 10 Efficiency for the orbital problem by Stiefel and Bettis

In Fig. 8, we see the results for the resonance problem for energy E = 989.495874.
In Fig. 9, we see the results for the Franco–Palacios almost periodic problem, in Fig. 10,
the results for the Stiefel–Bettis almost periodic problem are present, in Fig. 11, the
results for the inhomogeneous equation are present and finally in Fig. 12, we see the
results for the Duffing equation.

Among all the methods used, the new optimized symmetric ten-step predictor–
corrector method with twelfth algebraic order and infinite phase-lag order (phase-
fitted) was the most efficient.

5.4 Conclusions

We have constructed a new predictor–corrector (PC) pair form (21) and from this
form the new optimized symmetric ten-step predictor–corrector method with twelfth
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Fig. 11 Efficiency for the inhomogeneous equation

Fig. 12 Efficiency for the Duffing equation

algebraic order and infinite phase-lag order (phase-fitted) (22). We concluded that the
new method are highly efficient compared to other optimized methods which also
reveals the importance of phase-lag when solving ordinary differential equations with
oscillating solutions.

Acknowledgments The authors wish to thank the Professor Theodore E. Simos and the anonymous
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